An exploration of techniques for addressing uncertainty in survival estimates used within partitioned-survival models

Ash Bullen1, Simone Critchlow2

BresMed

1 BresMed, Sheffield, UK

Objectives

Survival outcomes from partitioned-survival models are typically associated with uncertainty, particularly in oncology where projections of long-term survival estimates heavily influence the cost effectiveness of products. Long-term survival estimates are of particular relevance where data are limited due to the duration of trial follow-up used to inform modelled survival.

However, no guidance exists on how best to address the uncertainty of survival estimates used to inform economic modelling. Guidance from the National Institute for Health and Care Excellence (NICE) states that when there is uncertainty regarding the most appropriate assumption to use for extrapolation of outcomes beyond trial follow-up, the impact of the uncertainty on estimates of cost effectiveness should be explored by separate analyses of a representative range of plausible scenarios.

While NICE guidance suggests exploration of the potential uncertainty of curve fit type (i.e. choice of distribution), it does not consider the uncertainty of the parameters used to produce the curve itself.2 This exploratory analysis has been undertaken, given that individual curve fit parameters are typically sampled within a probabilistic sensitivity analysis (PSA).

Our objective was to investigate alternative techniques for addressing survival uncertainty, along with recommendations for implementation in economic modelling in order to facilitate decision making.

Methods

A simplified replication of the three-state partitioned-survival model used to inform the technology appraisal of pixantrone for third-/fourth-line treatment of aggressive non-Hodgkin’s lymphoma (NHL) (TA306) was used as a case study to explore possible techniques for addressing survival uncertainty.3 This model was chosen due to the simplicity of the model structure and its generalisability to models constructed in similar disease areas.

The model comprises a simple three-state partitioned survival structure, where patients enter the model with pre-progressive disease, and then transition to post-progressive disease or death. The likelihood of moving between different health states was estimated using an area under the curve (or partition approach informed by progression-free survival (PFS) and overall survival (OS) curves from the PX307 trial).4 Data were obtained via duplication of published curves using specialist software, and a published algorithm was applied to recalculate patient level data.4 From these data, parameteric curves were fitted. The base case parameteric curve fits (top-normal for both PFS and OS) and the Kaplan-Meier plots are shown in Figure 1.

1. One-way sensitivity analysis (OBSA) of survival parameters — testing the impact that varying parameters to their lower and upper boundaries has on the 95% confidence interval (CI) for each parameter has upon the model outcome

2. PSA of all model parameters

3. Multi-way sensitivity analysis (MWSA) of survival parameters (95% CI) and probabilistic sampling of survival curves alone and parameter combinations

4. PSA of survival parameters alone, as well as confidence ellipses for the PSA of all parameters, all non-survival parameters and survival parameters alone

Finally, we present a comparison of methods, providing a range of uncertainty in a summary tornado diagram

OBSA and PSA are recommended for use within health technology appraisal submissions to NICE and other bodies as standard, and, therefore, further details regarding these analyses may be found in the NICE Guide to the Methods of Technology Appraisal.1 The results of these analyses are shown in Figures 2 and 3, respectively.

To extend these analyses, a MWSA was conducted to establish the uncertainty attributable to all survival curve parameters in combination. To do this, all parameters contributing to a given curve were varied using a multivariate normal distribution at 95% confidence limits. In addition, probabilistic sampling of survival curves was conducted by sampling the 95% percentiles of survival results and their associated cost-effectiveness results. The results are shown in Figure 4.

A MWSA including survival parameters alone was carried out in order to ascertain the impact of varying survival parameters on the overall incremental cost-effectiveness ratio. Within this analysis, all survival parameters were sampled from their respective distributions while all other parameters were fixed at their mean values. The results of this analysis are also shown within Figure 3. To attach an example metric to the proportion of uncertainty directly attributable to survival, the area of each associated confidence ellipse was calculated from the probabilistic results and compared. This produced a comparable percentage area. Confidence ellipses and the associated proportion of uncertainty attributable to each set of parameters are shown in Figure 5.

Results and Discussion

Variation of individual curve fit parameters in isolation demonstrated relatively large uncertainty on model results, but failed to clearly establish the uncertainty regarding the survival of patients due to the intrinsic correlation that exists between related parameters. Initial curve fit parameter variation resulted in somewhat misleading results, as alternate aspects of modelled survival.

A range of techniques to report survival uncertainty were sourced from those applied in previous submissions to NICE, as well as original methods developed for this study. The methods we have considered are:

Conclusions

We recommend the use of techniques that illustrate uncertainty in all survival estimates simultaneously to account for the correlation between relevant parameters, as this accurately reflects the uncertainty inherent in parameters. The methods that meet these criteria include the use of whole curve techniques (considering the variation of curves for all parameters in combination), and PSA of survival parameters in isolation. These broader methods that explore "whole curve" uncertainty appeared to reduce overall uncertainty in model results (leaving them in line with clinical results), while also presenting easily communicable differences in likely survival.

Further work would aim to explore how these methods of exploring the uncertainty in survival impact on other modelling approaches (such as discrete event simulation, or Markov models with patient level probabilistic), as well as models constructed in different disease areas more complex statistical models for survival (such as spline curve fits). In addition, further work may consider the impact on survival estimates of a curve that are associated with increased uncertainty (i.e. the extrapolated proportion of each curve).

References


1 BresMed, Sheffield, UK

Presented at the ISPOR 19th Annual International Meeting, 29 October to 2 November 2016, Vienna, Austria