Sensitivity analysis for not-at-random missing data in trial-based cost-effectiveness analysis using multiple imputation

Baptiste Leurent, Manuel Gomes, Rita Faria, Steve Morris, Richard Grieve, James Carpenter

ISPOR Europe
November 2018
Missing data are common in RCTs
 → Loss of power
 → Risk of bias

Particularly important in CEA
 - Complex data
 - Long term follow-up

Typically assume data are "missing at random"

But risk of being missing could depend on the data value itself → MNAR
MAR: Missingness only depends of observed variables
- Can get valid inference using the observed data

MNAR: missingness depends of outcome value itself
- E.g. less likely to complete a health questionnaire when ill
 - Cannot judge from the data
 - Need additional assumptions to conduct the analysis

But often plausible

Guidelines → Should assess whether results robust to MNAR assumptions

Clear gap between recommendations and practice

Recommendation 15: Sensitivity analyses should be part of the primary reporting of findings from clinical trials. Examining sensitivity to the assumptions about the missing data mechanism should be a mandatory component of reporting.
(NRC 2010)
Pattern-mixture models (PMM) are one possible approach for MNAR analysis.

Distribution = *mixture* of observed and missing distributions.

For example: assuming missing and observed data have same distribution, but with mean shifted by \(\delta \)

\[Y_{\text{miss}} = Y_{\text{obs}} + \delta \]

\(\delta \) = average difference between missing and observed values (conditionally on observed data)

Can also use a multiplicative factor \(c \):

\[Y_{\text{miss}} = Y_{\text{obs}} \times c \]
Multiple Imputation (MI) commonly used in trial-based CEA

Typically under MAR, but can accommodate MNAR

Idea is simple:
1. Conduct usual MI
 - Under MAR
2. Modify imputed data to reflect MNAR assumption
 - e.g. reduce imputed data by 10%
3. Analyse as usual MI dataset
 - Using Rubin’s rules

Sensitivity analysis can be conducted over a range of plausible values for δ, to see how affect conclusions
Example: the 10 Top Tips trial

- RCT, evaluating a brief intervention for weight loss, in UK general practices
- **Primary outcome**: weight loss at 3 months
- **Follow-up**: 2 years (3, 6, 12, 18, 24 months)
- **CEA**:
 - Costs: NHS resource use over 2 years
 - Effectiveness: EQ-5D at each visit → QALYs over 2 years

- N=537 patients
- But only 60% at 24M, and 30% complete cost-effectiveness data
- More likely to drop out if less successful → MNAR
Applying **PMM** approach to 10TT:

- Let’s denote \(c = \text{MNAR multiplicative parameter for the QoL scores} \)

e.g. \(c = 0.9 \): the missing QoL are assumed 10% lower than under MAR

- What values for \(c \)?

 - \(c = \{1, 0.95, 0.90\} \) (= drop out probably worst off, somewhere between MAR, and 10% worst)

 - \(c \) could differ between arms, but more likely to be close to each other

 → 7 scenarios considered
→ Under MAR, 48% probability 10TT cost-effective
→ But results sensitive to departure from MAR
Discussion

- Easy to implement
- Results can be sensitive (not always the case!)
- Challenges:
 - Choosing sensitivity parameters
 - Expert opinion
 - Tipping-point
 - Reporting
 - Clarity is essential
 - Alternative: reference-based imputation
Can never recover missing information ⇒ avoiding missing data best solution

Missing data → make assumptions → what if do not hold?

Multiple imputation offers a convenient way to conduct these sensitivity analyses

Some challenges: elicitation, reporting, etc.
⇒ But not excuses not to conduct them

Likely will evolve over time, as become more routinely conducted
James Carpenter¹, Manuel Gomes², Rita Faria³, Steve Morris², and Richard Grieve¹

¹ London School of Hygiene and Tropical Medicine
² University College London
³ University of York

The 10TT investigators

Funded by the National Institute for Health Research

